Discrete distributions

(sample space is a subset of the integers)

Discrete uniform(a, b) $a, b \in Z, a < b$

Equally likely events labelled with integers from a to b.

PMF	1/n n = b - a + 1
Support	$\{a, a + 1,, b - 1, b\}$
Mean	$\frac{a+b}{2}$
Variance	$\frac{n^2 - 1}{12}$

Bernoulli(p) p ∈ [0, 1]

An event with two outcomes: 1 = success, 0 = failure

PMF	1 - p x = 0
	p x = 1
Support	$\{0,1\}$
MGF	$1 - p + pe^t$
Mean	p
Variance	p(1-p)

Binomial(n, p) n = 1, 2, 3, ...; $p \in [0, 1]$

The number of successes in n Bernoulli(p) trials (a count)

PMF	$\binom{n}{x} p^x (1-p)^{n-x}$
Support	$\{0, 1,, n\}$
MGF	$(1 - p + pe^t)^n$
Mean	np
Variance	np(1-p)

$\textbf{Geometric(p)} \ p \in [0, 1]$

The number of successes in Bernoulli(p) trials until one failure.

PMF	$(1-p)p^x$
Support	$\{0, 1, 2,\}$
MGF	$\frac{1-p}{1-pe^t}$
Mean	$\frac{p}{1-p}$
Variance	$\frac{p}{(1-p)^2}$

Negative binomial(r, p) $r = 1, 2, 3, ... p \in [0, 1]$ The number of successes in Bernoulli(p) trials until r failures.

PMF	$\binom{x+r-1}{x}(1-p)^r p^x$
Support	$\{0, 1, 2,\}$
MGF	$\left(\frac{1-p}{1-pe^t}\right)^r$
Mean	$rrac{p}{1-p}$
Variance	$r\frac{p}{(1-p)^2}$

Poisson(\lambda) $\lambda > 0$

Count of events that have constant rate, and are independent of one another.

PMF	$\frac{\lambda^x e^{-\lambda}}{x!}$
Support	$\{0, 1, 2,\}$
MGF	$\exp(\lambda(e^t - 1))$
Mean	λ
Variance	λ

Continuous distributions

(sample space is an interval on the real line)

Uniform(a, b) $a, b \in R$

Likelihood of event proportional to it's length.

PDF	$\frac{1}{b-a}$
CDF	$\frac{x-a}{b-a}$
Support	[a,b]
Mean	$\frac{a+b}{2}$
Variance	$\frac{(b-a)^2}{12}$

Exponential(\theta) $\theta > 0$

Waiting time until a Poisson event with average waiting time θ .

PDF	$rac{1}{ heta}e^{-x/ heta}$
CDF	$1 - e^{-x/\theta}$
Support	$[0,\infty)$
MGF	$\frac{1}{1-\theta t}$
Mean	θ
Variance	θ^2

Exponential(λ) $\lambda > 0$

Waiting time until a Poisson event with rate λ .

PDF	$\lambda e^{-x\lambda}$
Mean	$1/\lambda$

Gamma(a, \theta) $\alpha > 0, \theta > 0$ Waiting time for α Poisson events with average waiting time θ .

PDF	$\frac{\theta^{-\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-x/\theta}$
CDF	No closed form
Support	$[0,\infty)$
MGF	$\frac{1}{(1-\theta t)^{\alpha}}$
Mean	$\alpha \theta$
Variance	$\alpha \theta^2$

Gamma(\alpha, \beta) $\beta > 0, \theta > 0$

Waiting time for a Poisson events with rate β .

PDF	$\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}$
Mean	lpha/eta

Normal(\mu,\sigma^2) $\mu \in R$, $\sigma^2 > 0$

PDF	$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
CDF	$\Phi(x)$
Support	$(-\infty,\infty)$
MGF	$\exp(\mu t + \frac{1}{2}\sigma^2 t^2)$
Mean	μ
Variance	σ^2