Discrete distributions

(sample space is a subset of the integers)

Discrete uniform(a, b) a,bcz,a<b Geometric(p) p < [0, 1]
Equally likely events labelled with integers The number of successes in Bernoulli(p)
from atob. trials until one failure.
PMF 1/n n=b—a+1 PMF (1 —p)p*
Support | {4 a+1,..,b—1,b} Support |10 1,2 ...}
Mean a+b MGF 1—p
2 1 — pet
Variance | ;2 _ 1 Mean p
12 1—p
) Variance b
Bernoulli(p) p < [0, 11 1_p)2
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An event with two outcomes:

1 = success, 0 = failure

Negative binomial(r, p) r=1,2,3,.. p<[0,1]

PMF l-p =0 The number of successes in Bernoulli(p)
p x=1 trials until r failures.
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Binomial(n, p) n=1,2,3, ..;p < [0, 1] Mean P
The number of successes in n Bernoulli(p) 1=p
trials (a count) Variance D
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Poisson(A) A>o0
Support | {0,1,...,n} Count of events that have constant rate,
MGE ; and are independent of one another.
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Continuous distributions

(sample space is an interval on the real line)

Uniform(a, b) a,bcR Gamma(a, 0) «>0,6>0
Likelihood of event proportional to it’s Waiting time for a Poisson events with
length. average waiting time 0.
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Exponential(8)6>0 _ Gamma(a, B) $>0,6>0
Waiting time until a Poisson event with Waiting time for a Poisson events with rate
average waiting time 6. B.
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Exponential(A) A >0
XVaiting time until a Poisson event with rate Al exp(uit + %(72152)
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