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1 Continuous random variables.

1. X1 ∼ Uniform(0,20). In this case, the expected value of the distance the pebble lands away from me

on the first skip is

E[X1] =
(20 + 0)

2
= 10

Also, we can see that the probability that the pebble will land between 10-20 feet away from me is

equal to

P (10 < X1 ≤ 20) =

∫ 20

10

1

20
dx

=
1

20
[x]

20
10

= 0.5

2. X2 ∼ N (µ, σ
2

n ) = N (10, 100/3100 ) = N (10, 13 ) (since E[X1] = 10 and V ar[X1] = (20−10)2
12 = 100

3 ). Thus

the probability that the mean distance the pebble lands from me will be between 10-20 feet is equal to

P (10 < X2 ≤ 20) =

∫ 20

10

1√
2 · 13 · π

e−(x−10)
2/(2· 13 )

≈ 0.5

3. X3 ∼ gamma(α = 2.5, β = 2). The gamma distribution is a natural distribution for describing the

precision, because σ2 ∈ [0,∞), and the support of a gamma random variable is also over [0,∞). Note

that we can calculate the parameters α, β for this family since{
E[X3] = αβ = 5

V ar[X3] = αβ2 = 10

}
=⇒ β = 2, α = 2.5.

Thus the probability that the precision is between 2 and 3 is equal to

P (2 < X3 ≤ 3) =

∫ 3

2

1

Γ(2.5)22.5
x2.5−1e−x/2

≈ 0.0597.
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4. X4 ∼ exponential(300). The exponential distribution is commonly used to model lifetimes, analogous to

the geometric distribution in the discrete case. In fact, both the exponential and geometric distributions

share the “memoryless” property, i.e ∀s > t ≥ 0, P (X > s|X > t) = P (X > s− t). The variance of X4

can be thus calculated if one recalls that, for Y ∼ exponential(β), then E[X] = β and V ar[X] = β2.

Thus

V ar[X4] = 3002 = 90000

The probability that the next lightbulb is a “dud” is equal to the probability that it expires 1 hour of

use, i.e.

P (X4 ≤ 1) =

∫ 1

0

1

300
e−x/300

≈ 0.00332.

2 Normal distributions.

Let the random variable X denote the grades in this class, so that X ∼ N (72, 36).

1. We want to calculate x such that P (X > x) = 0.15. We have that

P (X > x) = 0.15

=⇒ P (Z >
x− 72

6
) = 0.15 (using z − transform)

Using a z-table, this gives

x− 72

6
= 1.04

=⇒ x = 78.4.

Hence the minimum score to get an A is 78.4%.

2. 15%

3. 50%

4. 25%

3 Transformations of PDFs.

1. We are given that X ∼ N (0, 1), i.e.

fX(x) =
1√
2π
e−x

2/2, x ∈ (−∞,∞).

Consider Y = g(X) = X2. Then the support of Y is Y = (0,∞). Because this function g(x) is

monotone on (−∞, 0) and (0,∞), then take

A0 = {0}
A1 = (−∞, 0), g1(x) = x2, g−11 (y) = −√y
A2 = (0,∞), g2(x) = x2, g−12 (y) =

√
y.
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Then the PDF of Y is given by

fY (y) =
1√
2π
e−(−

√
y)2/2| − 1

2
√
y

+
1√
2π
e−(
√
y)2/2| 1

2
√
y

=
1√
2π

1
√
y
e−y/2,

y ∈ (0,∞). In other words, Y is a chi-squared random variable with 1 df.

2. We have given that X ∼ gamma(n, β), i.e.

fX(x) =
1

Γ(n)βn
xn−1e−x/β , 0 < x <∞.

Consider Y = g(X) = 1
X . Then the support of Y is Y = (0,∞). Let y = g(x). Then g−1(y) = 1

y and
d
dy g
−1(y) = − 1

y2 . Thus the PDF of Y is given by

fY (y) = fX(g−1(y))| d
dy
g−1(y)|

=
1

Γ(n)βn

(
1

y

)n−1
e−1/(βy)

1

y2

=
1

Γ(n)βn

(
1

y

)n+1

e−1/(βy),

y ∈ (0,∞). In other words, Y has a inverse-gamma PDF, a natural distribution for describing the

variance of a normal distribution.

3. For Y = FX(X) we have, ∀0 < y < 1,

P (Y ≤ y) = P (FX(X) ≤ y)

= P (F−1X [FX(X)] ≤ F−1X (y)) (since F−1X is increasing)

= P (X ≤ F−1X (y))

= FX(F−1X (y)) (definition of FX)

= y (continuity of FX).

At the endpoints we have P (Y ≤ y) = 1 for y ≥ 1 and P (Y ≤ y) = 0 for y ≤ 0, showing that

Y ∼ uniform[0, 1].

Thus we have that, for X with continuous CDF FX(x), Y = FX(X) ∼ uniform[0, 1]. This im-

portant result can be used in simulation to generate random samples from a given distribution. In

particular, if we need to generate an observations X from a population with CDF FX(x), then we need

only to generate a uniform random number U from a uniform[0, 1] distribution, and then solve for x

in the equation FX(x) = u. This allows us to generate numbers from any distribution!

3


	Continuous random variables.
	Normal distributions.
	Transformations of PDFs.

